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ABSTRACT

Solute transport studies involving layered media are important for
investigating how restricting layers affect rates of solute migration
in the soil profile and, more generally, for examining the influence
of soil heterogeneity on solute transport. Analytical solutions of the
one-dimensional advection-dispersion equation (ADE) were obtained
with the help of Laplace transforms for transport in a two-layered
soil profile. Assuming that the layers are, in effect, semi-infinite,
solutions were obtained for first-type (constant concentration) and
third-type (constant flux) conditions at both the inlet boundary and
the interface of the two layers. Concentration profiles were also ob-
tained for a finite first layer via numerical inversion of the Laplace
transform solution, using a third-type condition at the inlet, and,
simultaneously, a first- and third-type condition at the interface.
YVolume-averaged or resident-type concentrations were used in all
cases. First-type conditions did not meet our criterion of mass con-
servation, whereas third-type conditions caused discontinuities in the
concentration at the interfaces of layers with differing transport pa-
rameters. The concentration at the interface was found to be con-
tinuous, and no mass-balance error occurred, when first- and third-
type conditions were imposed simultaneously at the interface. Sev-
eral example calculations show the effect of soil layering on solute
transport in a one-dimensional soil profile.

NTEREST IN THE TRANSPORT of chemicals in soils is
motivated by the potential of agricultural and other
chemicals (fertilizers, pesticides, industrial wastes) to
move from the soil surface through the unsaturated
zone toward the groundwater table. The leaching of
solutes in the unsaturated zone may be affected greatly
by the presence of soil layers. Soil stratification is a
natural phenomenon that is common to many soils.
Also, artificial barriers (e.g., clay liners) are often used
to slow down or prevent the movement of certain
chemicals. Finally, the macroscopic impact of soil lay-
ering is important in more general studies of the effect
of soil heterogeneity and anisotropy on solute trans-
port. For example, a heterogeneous soil profile is often
approximated by a series of homogeneous soil layers.
Solute transport in soils is usually described deter-
ministically with the ADE, although alternative
stochastic approaches also exist (Jury, 1982). Exact
and approximate analytical solutions for transport in
layered soils are now available for a limited number
of situations. In most cases, however, numerical meth-
ods need to be employed. Unfortunately, compared
with analytical solutions, numerical solutions fre-
quently do not provide as much insight into the effects
of physical and chemical processes on solute transport,
and often are also susceptible to computational errors.
Hence, analytical solutions remain useful for a variety
of applications, including verification of numerical so-
lutions.
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Past research on transport in layered soils has fo-
cused mainly on the effects of layering on solute break-
through curves. Experimental results have been
reported by Shamir and Harleman (1966), Selim et al.
(1977), and Moranville et al. (1977). Theoretical anal-
yses of solute breakthrough curves, using transfer func-
tions and time moments, were carried out by Kreft
(1981a) and Barry and Parker (1987). In many cases,
however, it is also important to know the actual solute
distribution in a layered profile. Analytical solutions
for solute transport have been reported by Shamir and
Harleman (1967), and Al-Niami and Rushton (1979).
Both studies used a first-type (constant concentration)
inlet condition. Shamir and Harleman (1967) assumed
that the profile consisted of semi-infinite layers, while
Al-Niami and Rushton (1979) used finite layers. Since
only the concentration was continuous at the inlet and
interfaces (Dirichlet conditions), neither solution will
satisfy the principle of mass conservation at interfaces
and, as a result, the applied solute mass is not equal
to the mass accumulated in the soil profile. Al-Niami
and Rushton (1979) also imposed the physically un-
realistic assumption that the concentration gradient is
zero at the interfaces of the layers.

The objective of this study was to simulate one-
dimensional solute transport in a layered soil using
both numerical and analytical methods. As with most
previous studies, the layered profile was approximated
by a series of homogeneous layers, each having its
unique physical and chemical characteristics. Analyt-
ical solutions were obtained for a two-layer medium
using three different combinations of inlet and inter-
face conditions. Since the boundary and interface con-
ditions play an important role in the solution of the
ADE for layered media, the applicable boundary con-
ditions are briefly reviewed. The effect of layering on
calculated solute concentrations in a layered soil pro-
file is illustrated qualitatively, using both analytical
and numerical solutions.

THEORY

Analytical Solution for a Two-Layer Medium

Figure 1 schematically shows a layered soil, consisting of
two homogeneous layers, during steady water flow perpen-
dicular to the interface of the two layers. The first layer is
located between x = 0 and x = L, and the second layer
between x = L and infinity. Transport of a linearly exchang-
ing solute in both layers is described with the ADE:

= G _ p PG aC,
Kot Tk ax2 ax

1
a7 t>0 [1]
where R is the retardation factor, C is the resident concen-
tration expressed in mass of solute per volume of solution
[M L-3], ¢ is time [T], D is the dispersion coefficient [L? T-'],
v is the mean pore-water velocity [L T-!], x is distance in
the direction of flow [L], and the subscript k refers to the
soil layer (k = 1,2). We emphasize that, in this study, C
represents volume-averaged or resident concentrations (van
Genuchten and Parker, 1984) rather than flux-averaged con-
centrations as employed by Barry and Parker (1987). Vol-
ume- and flux-averaged concentrations are related according
to (e.g., Kreft and Zuber, 1978)

- Ve
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aC
F — D -
vC vC — ™ 2]
where the superscript F denotes a flux-averaged value.

The dispersion coefficient D in Eq. [1] reflects two mech-
anisms responsible for solute spreading, molecular diffusion
and mechanical dispersion. A common expression for the
dispersion coefficient is

D=\D, + aM [3]

where D, is the ionic or molecular diffusion coefficient in
free water [L?T-'], A is a tortuosity factor (0 < A < 1), and
a is the dispersivity [L]. Equation [3] assumes that, ma-
croscopically, the active process of diffusion can be com-
bined with the more passive process of mechanical
dispersion. It is unlikely that this assumption correctly de-
scribes the microscopic diffusion-dispersion process in the
vicinity of interfaces. Hence, the ADE as given by Eq. [1]
can, at best, approximate solute transport in the neighbor-
hood of interfaces.

Two different approaches were used to solve Eq. [1] an-
alytically. In one approach, we assumed that each homo-
geneous layer is part of an effectively semi-infinite system.
This approach assumes that concentrations in the first layer
are not affected by the presence of a second layer and, hence,
that analytical solutions for homogeneous media can be ap-
plied immediately to the first layer. Barry and Parker (1987)
derived conditions that indicate that this approach is justi-
fied in most cases. Transport in the second layer was solved
for a first- or third-type condition at the interface of the two
soil layers using the solute concentration of the first layer as
the inlet condition for the second layer. In concept, this ap-
proach is relatively straightforward and can be extended to
any desired number of layers (although the solution process
becomes more tedious when the number of layers increases).

In the second approach, we assumed that the first layer
was finite. The interface conditions were then formulated so
that solute fluxes and solute concentrations became contin-
uous. This approach caused the concentration of the first
layer to become dependent on the transport properties of
Lh? second layer. Both approaches are discussed separately

elow.

Semi-infinite First Layer
The initial condition imposed on Eq. [1] is
C (x0) = g 0<x<L [4]

where g, is assumed to be a constant, For the inlet boundary
at x = 0, we imposed step functions of duration ¢, using
either a first-type condition of the form

C, O0<t=t,
Cileo = [O t>t, 51
or a third-type condition
aC, C, O<t=1t,
(vlCl — D, a_x) = {81 1>t [6]

where x|0, sometimes denoted also as x—0*, implies that x
= 0 is approached from inside the soil profile. The physical
basis of Eq. [5] and [6] has been discussed at length in the
literature (e.g., Danckwerts, 1953; Wehner and Withelm,
1956; Pearson, 1958; Kreft and Zuber, 1978; van Genuchten
and Parker, 1984). Adoption of a first-type condition always
leads to continuity in the resident concentration, whereas a
third-type condition always leads to continuity in the solute
flux. Because of these properties, the first-type condition is
also known as a concentration-type condition, and the third-
type condition as a flux-type condition. The latter condition

* 8,v,Co

Fig. 1. Schematic of transport in a two-layer medium (¢ = volu-
metric water content, v = pore-water velocity, C;, = concentration
of the incoming solution, D = dispersion coefficient, R = retar-
dation factor, and C,,, = concentration of the effluent).

is the more appropriate one for solute displacement exper-
iments (van Genuchten and Parker, 1984). Because solutions
obtained with a first-type condition are useful for situations
where the concentration is measured as a flux-averaged value
(e.g., for column effluent curves), we also considered the first-
type boundary condition. We noted that adoption of the third-
type condition leads to a macroscopic discontinuity of the
(volume-averaged) resident concentration at the inlet, even
t.hough mlcroscoplcally, the concentration dlsmbutlon may
remain continuous for all times ¢ > 0 (see discussions by
Dagan and Bresler, 1985; Parker and van Genuchten, 1985).
This discontinuity results from the simplifying assumptions
that (i) the incoming solution is well mixed and has a constant
concentration, and (ii) the dispersion coefficient at or im-
mediately below the soil surface is the same as that of the soil
profile farther away from the inlet boundary.

If we assume that the concentration of the first layer is
unaffected by the second layer, then one can readily invoke
boundary conditions for homogeneous media at the outlet
of that first layer. A commonly used condition assumes that
the concentration is macroscopically continuous across the
outlet boundary, at x = L

e}
ax

However, it is difficult to imagine how dispersive transport
between two layers will vanish during transient advective
transport across the outlet boundary. Alternatively, the pres-
ence of an effectively semi-infinite medium could be invoked
by imposing the condition

ac,
09X ix—=

=0 >0 (71

XL

=0 >0 8]

Because of considerations outlined in detail by van Genu-
chten and Parker (1984), and because of possible mathe-
matical simplifications later, we decided to use Eq. [8] for
our analytical solutions. We emphasize that, at least for ho-
mogeneous soils, differences between solutions for finite and
semi-infinite media are usually rather small (van Genuchten
and Alves, 1982).

The analytical solution of Eq. [1] subject to Eq. [4] and
[8] for a first- or third-type condition at the inlet is:

_ L+ (C, — g1) A(x,t) O<t=<t,
i (o) = { g + (C. — &) A(x)
— CA(xt — t,) t>1t, 9]

where, for a first-type condition (Lapidus and Amundson,
1952),

it
A(x,t) = erf [——( aD.R.1) /2]

1 Rix + vt
*3 e"p(Dl) erfe [(4D.R.z)“2] [10]

and, for a third-type condition (Lindstrom et al., 1967),



946 SOIL SCI SOC. AM. J., VOL. 55, JULY-AUGUST 1991

vt
Alx,t) = Cl'f [W}
vlt 12 (Rlx - vlt)z
+ —_ —_—,—
( wD,R,) exp 4D,R,t
1 nx vit
2 (‘ + D, + DR )

x + v ] [11]

% e""(Dl) erfe [(4“ o

Analytical solutions for the second layer were obtained
with the following boundary and initial conditions:

C(x0) = g x>1L [12]
Cilar = Ciur (first type) [13]
or
aC,
(01v1C1 6,D, Bx)
G,
aC, -
pyel M 0 [15]

where 6 is the volumetric water content and g, is assumed
to be constant. Interface Condition [13] is used in conjunc-
tion with Eq. [9] and [10] while Condition [14] is applied
with Eq. [9] and [11]. Notice that Eq. [13] implies that the
concentration is continuous across the interface, while Eq.
[14] implies that the solute flux is continuous.

The analytical solution of Eq. [1] with &k = 2, subject to
Conditions [12}, [13], and [15] for the ﬁrst-type inlet and
interface conditions, was obtained by Laplace transforma-
tion (for details, see Leij and Dane, 1989). The solution may
be written in the form

(Co — &A%Y

+(g—g2)B(xt)+g2 O<t=1t,
C2 (x,t) =
v (Co - gl)A(x’t) - CoA(x’ t— to)
- (& — g)Bx) + & t>t, [16]
where
t
Aoty = 2L

- . f erfc RlL - W"Wr
4(wDo/R)* ] (4R.Dy7)'?

vL R,L + vr
+ — -3/2
exp ( Dl) erfe [ (4R1D17)”2] } % [ ¢

[ Rfx—L) =t =1\
e""[ ( 4R.Dl — 7) ) ”d’ [17a]

__1_ Rz(x—L)_th
Blot) = 5 erf [ @R,D,0)" ]
1 [(wx—D Ry (x — L) + vyt
2 ""“’( b, )e’f°[ @R.D)” ] 7ol

where 7 is an integration variable. Similarly, the solution of
Eq. [1], [12], [14], and [15] for third-type conditions is given
by Eq. [16] with
I3
V2 RlL - vlT !

A(x,t) = ——=—— f erfc | ————

00 = @R, Dy [ [ (aR.D, )7 }
0

nk RL+ v
+ exp ( D, )erfc[ (4R1Dlr)1/2]]
o e

_ V2 vx — L)
(@R,D,)"2 e"p[ D, ]

R(x~L)Y+ v, (t—17)
[4R.D, ( — D" ]) dr [18a]

B(xt) = ( W;ftD 2)"Zexp { C[R(x — L) — waP }

4R,Dyt
l [Rz(x—L)— vzt}

+ —_—
27| T @rR,D)""”

1 v,(x — L)  vit )
+- 1+ +
2 ( D, R,D,

exp[vz(x—L)}erfc[Rz(x-—L)+vzt

X erfc{

D, (4R,D;1)'2 J [18b]
The integrals appearing in these solutions were evaluated
with the help of the Gauss-Chebyshev formula (see Appen-
dix A). Equations [17] and [18] show that transport prop-
erties of both layers influence the solute concentrations of
the second layer.

The above solutions hold for a two-layer soil profile. La-
place domain solutions are easily obtained for profiles con-
sisting of more than two layers. Consider step displacement
(t, — ) in a medium containing » homogeneous layers with
uniform initial concentration, g, in the entire profile. For
first-type conditions at the interfaces of two consecutive lay-
ers, the Laplace solution for layer k is

exp ( kil )\l)

L. +8
and, for third-type conditions,
Co — 8
(v — D\
k-1
exp( D )\I)exp D (x — Lo - )] + g [20]

Jj=1

t'k (x,S) =

exp [M (x — l<k=n [19]

Ck(xs) =

where s is the Laplace transform variable, / is the length of
layer j, L, _, is the distance from the inlet to the interface
between layers £k — 1 and k, and

% _VL) s, |
Y~ oD, [(21), *D [21]

J
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Solutions in the real time domain are complicated, but
can be formally obtained by making use of the convolution
theorem. The important points illustrated by Eq. [19] and
[20] are that (i) the order of the soil layers from layer 1 to
k — 1is irrelevant when calculating the solute concentration
of layer k, and (ii) the concentration of any layer k is not
affected by any layer beyond k. Similar conclusions were
obtained by Shamir and Harleman (1967), Selim et al.,
(1977), and Barry and Parker (1987).

Finite First Layer

If we deal with resident concentrations, mass conservation
will require that the solute flux be continuous across the
interface. In addition, one could reason that the concentra-
tion across the interface must be continuous as well, at least
microscopically, because of the impact of ionic or molecular
diffusion. The transport problem where both the flux and
the concentration are continuous resembles the problem of
heat flow in composite media with no contact resistance at
the interface (Carslaw and Jaeger, 1959), and was applied
previously to steady-state solute transport by Wehner and
Wilhelm (1956). Rather than assuming that the first layer is
part of an effectively semi-infinite system, the two interface
conditions now serve as an outlet condition for the first layer
and an inlet condition for the second layer (Kreft, 1981b).
Consequently, Eq. [1] was solved subject to the following
conditions

C, (x0) =g O0<x<L [22]
Cx0) =g x>L [23]
(vlCl D, aa_C,)

X x 10

C, O<i=<1,

B { Sl t>t [24]

Cile1r = Clx\1 t>0 [25]
aC,

(01V1C1 — 6,D, a_xl )xl L

- (02v2C2 8,D, 622 ) ., t>0 D6
Gl o 1>o0 [27]
X lx— =

Equations [25] and [26] stipulate continuity in concentration
and flux across the interface. Using Eq. [25], the third-type
interface condition can also be written as a second-type
(Neumann) condition:

6C1

6,0, 2C1 aC,

1L 72 5x

t > 0 (second type)

x| L

[28]

The analytical solution of the problem, subject to Eq. [22]
to [27], is considerably more difficult than the previous so-
lutions for either the first-type or third-type inlet and inter-
face conditions. The solution in the Laplace domain is

C (xs) =&
Co — & — Coexp(—1)

+
(% - ql) (@ — @) exp (—wL) + (% + ql) (@ + q2) exp (w,L)

X % [ (@1 — q.) exp [ + wx — L)}

2D,
X
+ (g, + ¢q2) exp [ 2D, — wx — L) ] } [29]
Cilxs) = &
2q[Co — &1 — C, exp (—t,9)] exp (. L/2Dy)

(% - ql) (@ — @) exp(—w L) + (% + ql) (@ + q2) exp (w,L)

X [éexp[w—wz(x—L)]} [30]

+

2D
2
where
V; SR
O
q = (Djwj)/vj [32]

Note that the concentration profile in the first layer now
depends on the transport properties of the second layer. At-
tempts to analytically invert Eq. [29] and [30] were not suc-
cessful. Instead, we obtained concentration profiles using
numerical inversion of the Laplace transform according to
the method of Crump (1976). The solution in the Laplace
domain can also be readily used for time moment analysis
(e.g., Kreft, 1981a). Finally, we note that the two-layer so-
lution given by Eq. [29] and [30] provides a method for
examining concentration profiles at the inlet and outlet
boundaries of a homogeneous medium by adopting appro-
priately small values for D, and D,, respectively (see also
Wehner and Wilhelm, 1956; Pearson, 1958).

Numerical Solution for a Layered Medium

Analytical solutions are often not available, or cannot be
derived (e.g., for nonlinear sorption or time-dependent
boundary conditions), in which case, numerical methods
must be employed. In this section, we briefly outline the
mathematical problem and its solution. For a soil column
consisting of n layers, Eq. [1] was solved for the following
conditions:

Ce (x,0) = g O0<x<lL, [33]
(—D1 A v,C,) Llo =G t>0 [34]

Ck

@D) . °

x 1 Ly

I(s'ec’on’d type)
x | Ly k = 1,2 .

aC‘k+l

= (0D}, =

[35]
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or

C
[won— ()]

aC
= [(Bvc)k+l - (GD‘E)’HJ

(third type) [36]

x 1 Ly

x | Ly

3,
ax

=0 >0 [37]

x 1 L,

Note that only one condition is needed at each interface,
i.e., either Eq. [35] or [36]. Equation [1], subject to Eq. [33]
through [37], was solved numerically using an implicit
Crank-Nicolsen-type finite-difference method. Details of the
numerical solution are given by Leij and Dane (1989).

RESULTS AND DISCUSSION

Several examples are presented to illustrate the ef-
fects of layering and the use of different boundary con-
ditions on computed solute distributions. First, we
assessed the magnitude of mass-balance errors asso-
ciated with the three analytical solutions that were de-
rived for the two-layer medium. A second example
shows concentration profiles obtained analytically for
a two-layer medium having layers with different ad-
vective and dispersive properties. A third example
considers two different scenarios for reducing contam-
inant transport in a soil profile. Concentration profiles
for this last example were obtained numerically. Table
1 lists numerical values of the transport parameters
used for these examples.

Analytical Solutions for a Two-Layer Medium
Appendix B describes how the mass-balance error
is defined and how errors are obtained for the three

Table 1. List of transport parameters for the simulations (v = pore-
water velocity, D = dispersion coefficient, § = volumetric water
content, and R = retardation factor).t

Fig. Layer (k) vy D [ R
cm/d cm/d?
3a 1 10 40 0.4 1.0
2 10 5 0.4 1.0
3b 1 10 5 0.4 1.0
2 10 40 0.4 1.0
4a 1 50 20 0.2 1.0
2 20 20 0.5 1.0
4b 1 20 20 0.5 1.0
2 50 20 0.2 1.0
5a 1 100 52 0.4 4.25
2 100 52 0.4 4.25
3 100 52 0.4 4,25
5b 1 10 7 0.4 4.25
2 8 18 0.5 14.0
3 10 7 0.4 4.25
5c 1 10 7 0.4 4.25
2 8 18 0.5 14.0
3 10 7 0.4 4.25
6a 1 10 7 0.2 15
2 10 7 0.2 15
3 10 7 0.2 15
6b 1 1 4 0.2 15
2 0.5 2.5 0.4 1.0
3 1 4 0.2 1.5
6¢c 1 1 4 0.2 1.5
2 " 0.5 2.5 0.4 1.0
3 1 4 0.2 15

t 8./C, = 0.05, (g, is the initial concentration of layer £ and C, is the con-
centration of the incoming solute pulse).

analytical solutions. These errors were obtained by
comparing the amount of solute accumulated in the
soil profile with the cumulative solute flux entering
the soil (van Genuchten and Parker, 1984). The so-
lutions are distinguished according to the invoked in-
terface condition, i.e., a first-type solution, given by
Eq. [9), [10), [16), and [17]; a third-type solution given
by Eq. [9], [11], [16], and [18]; and a combined first-
and third-type solution given by Eq. [29] and [30]. For
a third-type condition, the relative error was exactly
zero, whereas, for a combined first- and third-type con-
dition, the error was found to be almost zero (<<0.1%)
due to approximations involving the numerical in-
version of the Laplace transform. The error associated
with the first-type boundary and interface conditions
gl) terms of dimensionless parameters is (see Appendix

_ 1 _8Y p_ P
l*"(wrovzexp( 4)[ : °xp( 2 %, )]

1 1 1 1
+=—|=+=2 ]
3 (m 2%m(zﬁj

P+g)
-(1-P+
1

&)L 1 P+ —y
em(zﬁi)+ [[““”“ﬁ[xa—wm}

P—¢—y
+Cm[xa—wm]]
{1 -ge] (2]

4¢,

S Y5 )]
+(ﬂy)em( x| |Y B8

1
+ 55 exp(P) erfc (
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‘ ~N

§

X
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Fig. 2. Relative mass-balance error as a function of the dimensionless
times ¢, and {, for the analytical solution of transport in a two-
layer medium using a first-type condition.
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where the dimensionless time {, = v#t/(R.D,) and the
Peclet number P = v,L/D,. For the one-layer case
(L — ), E, reduces to Eq. [10] of van Genuchten and
Parker (1984). We note that, if the solute influx were
determined just inside the porous medium as the sum
of the advective and dispersive fluxes, the error re-
sulting from the inlet boundary would be equal to zero
because of the mass-conserving nature of the ADE
(first-type conditions at the interface of soil layers
would still lead to errors). Although the use of such
an error criterion seems attractive for mathematical
reasons, the solute influx just inside the medium may
provide an incorrect estimate of the actual (physical)
solute flux just outside the medium, since no flux con-
tinuity is mandated for a first-type inlet condition. Fig-
ure 2 shows E, (%) vs. the dimensionless parameter {
for both layers. The error is largest for small values of
&1 and §,, with {;, having a slightly larger effect on the
error than ¢,. If {, = {;, we obtain Fig. 1 of van Gen-
uchten and Parker (1984).

Figures 3 and 4 show calculated solute distributions
for transport of a nonreactive solute (R = 1) in a two-
layer medium at various times for different values of
D and v. Relatively large differences in D and v were
used to illustrate the effects of soil layering. The types
of inlet and interface conditions are specified in the
figures (note that a third-type soil surface condition
was always used in conjunction with a combined first-
and third-type interface condition). The value of D for
the first layer of Fig. 3a is larger than that of the second

Time= 0.4 d

949

layer, whereas the opposite is true for Fig. 3b. This
causes the concentration profile in Fig. 3a to become
steeper in the second than in the first layer, whereas
in Fig. 3b the reverse can be observed. Previous studies
(e.g., van Genuchten and Parker, 1984) and Eq. [38]
showed that a first-type condition at the inlet boundary
introduces a mass-balance error that depends on the
values for D and v. This error is proportional to D and
can be evaluated qualitatively by comparing the first-
with the third-type solution. Figures 3a and b show
that the largest errors occur in the first and second
layer, respectively.

A discontinuity in concentration develops when a
third-type interface condition is used. This situation
is similar to the inlet boundary where the flux-aver-
aged concentration is continuous, and the resident
concentration discontinuous. From Eq. [2] and [14],
it follows that flux-averaged concentrations are con-
tinuous at the interface. Finally, the solution for a
combined first- and third-type condition at the inter-
face exhibits both mass conservation and continuity
of the (resident) solute concentration. The differences
between the solute profiles in the first layer for third-
and combined first- and third-type conditions show
the influence of the second layer on transport in the
first layer (Fig. 3a). The differences in concentration
are less pronounced for lower values of D in the first
layer (Fig. 3b).

The effect of different values for v on concentration
profiles during steady flow are shown in Fig. 4. In Fig.

Time= 0.8 d

o 06}

c/C

v=I0 cm/d

02} pe«40cm¥d 1} loyer !
v=10 cm/d v=I0 cm/d
o . D=40 cm?/A D=5 cm*/d
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of— — — —

40 2 4 51 12 14
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Fig. 3a. Relative concentration (C/C,) as a function of distance (x) for the analytical solution of the advection-dispersion equation for a two-

layer medium with v, =
interface conditions.

v, (v = pore-water velocity) and D, > D, (D = dispersion coefficient) at two different times using three different
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Fig. 3b. Relative concentration (C/C,) as a function of distance (x) for the analytical solution of the advection-dispersion equation for a two-
layer medium with v, = v, (v = pore-water velocity) and D, < D, (D = dispersion coefficient) at two different times using three different
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Fig. 4b. Relative concentration (C/C,) as a function of distance (x) for the analytical solution of the advection-dispersion equation for a two-
layer medium with D, = D, (D = dispersion coefficient) and v, < v, (v = pore-water velocity) at two different times using three different

interface conditions.

4a, the pore-water velocity is largest in the first layer,
while in Fig. 4b the second layer has the larger velocity.
The solute front is steeper at the interface in the low-
velocity layer. The mass-balance error associated with
the first-type condition can again be evaluated by com-
parison with the third-type condition. This error is
inversely proportional to v. For a third-type condition,
the concentration at the interface is lowest in the low-
velocity layer. The values of the advective and dis-
persive fluxes are, respectively, lower and higher in
the low-velocity layer than in the high-velocity layer
because of the differences in 8. We note again that, for
a third-type condition, the flux-averaged concentra-
tion is continuous at the interface. The differences be-
tween the third- and the combined first- and third-
type conditions are minor except in the vicinity of the
interface. The analytical solution for a third-type con-
dition can, therefore, be used in many instances, rather
than the more complicated solution for a combined
first- and third-type condition, which requires numer-
ical inversion of the Laplace transform.

Numerical Solutions for a Three-Layer Medium

The next two examples are meant to illustrate the
effect of a “barrier” on contaminant transport. Con-
centration profiles were obtained numerically using a

third-type condition at the inlet and a second- or third-
type condition at the interface.

Consider a homogeneous sandy soil with a low value
for R, which is saturated or close to fluid saturation.
Figure 5a shows calculated solute distributions for this
profile, using the parameter values listed in Table 1.
Transport of the solute can be slowed by incorporating
a fine-textured layer that reduces the solute flux by
decreasing the water flow rate and increasing adsorp-
tion. Figure 5 shows the effect on the solute-concen-
tration profiles of embedding a 2-cm-thick clay layer
in the otherwise homogeneous profile. Results are for
third-type (Fig. 5b) and second-type (Fig. 5c¢) condi-
tions at the interface of the soil layers. The presence
of the clay layer was assumed to result in a tenfold
reduction of v (Table 1). The value of D was calculated
according to Eq. [3], using AD, = 2 cm?/d, while «
was assumed equal to 0.5 cm for the sand and 2 cm
for the clay.

Figure 5b shows that the concentration in the clay
layer is considerably lower than in the sand layer at
both interfaces. This is caused by the use of two dif-
ferent parameter values in the ADE at the interface
(i.e., different values for D/R and v/R). One could ar-
gue that, at least microscopically, the concentration in
the liquid phase should be continuous at the interface.
The use of a second-type condition is, therefore, pre-
ferred, although the profiles in Fig. 5b and c are very
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Fig. 5. Relative concentration (C/C,) as a function of distance (x)
for different times (¢) in (a) a hypothetical sand without a clay
layer, (b) with a hypothetical clay layer and a third-type condition,
and (c) with a clay layer and a second-type condition.

similar, except for the clay layer. Locations of the front
for zero dispersion (shown by the five vertical dashed
lines in Fig. 5b) were included to show the effectiveness
of the added adsorption capacity of the clay layer. The
resulting step fronts correspond to times of 2, 4.25, 6,
7.75, and 10 d. The solute moves more slowly through
the sand when no dispersion occurs. Because of dis-
persion, the adsorption capacity of the clay layer is not
fully utilized. This example shows that the magnitude
of the dispersion coefficient needs to be known for
accurately predicting solute movement under these
conditions.

Figure 5 showed results for situations where a fine-
textured layer may retard solute transport in an other-
wise coarse-textured, relatively wet soil. Solute trans-
port may also be slowed by including a coarse-textured
layer in a relatively dry porous medium (Winograd,
1974). Figure 6 compares concentration profiles for a
homogeneous clay (Fig. 6a) with those for a clay-sand-
clay system using either a third-type (Fig. 6b) or a
second-type (Fig. 6¢) condition at the interface of the
soil layers; a third-type condition was always used at
the inlet of the soil. The inclusion of the sand layer
was assumed to result in a tenfold reduction of the
water flow rate (Table 1) because of the low hydraulic
conductivity of the sand. Since adsorption is now ab-
sent, the rate of solute movement is reduced to a lesser
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Fig. 6. Relative concentration (C/C,) as a function of distance (x)
for different times (¢) in (a) a hypothetical clay without a sand
layer, (b) with a hypothetical sand layer and a third-type condition,
and (c) with a sand layer and a second-type condition.

extent. Because of the lower value of P for the three-
layer system, considerable time is needed for the inlet
concentration to become equal to the input concen-
tration. Notice that the discontinuity at the interface
behaves in an opposite manner than for the clay layer
in the previous example.

CONCLUSIONS

Analytical solutions of the one-dimensional ADE
were obtained for transport in a two-layer medium
assuming both a first- and a third-type condition at
the inlet boundary and the soil interface. Both layers
were assumed to be part of a semi-infinite system. In
addition, concentration profiles were obtained for a
combined first- and third-type condition at the inter-
face, and a third-type condition at the inlet, using nu-
merical inversion of the Laplace transform. In this
case, the first layer was taken to be finite. The ADE
was also solved with a numerical finite-difference
scheme, assuming a third-type condition at the inlet
and a second- or third-type condition at the interface.

The solution of the ADE subject to concentration-
type (first-type) inlet and interface conditions may lead
to substantial mass-balance errors if the solute profile
is subjected to a known solute flux. These errors are
avoided by using flux- or third-type conditions, lead-
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ing to a discontinuity at the soil surface and at the
interface (the flux-averaged concentration, in that case,
would remain continuous across the interface). A very
realistic solution is obtained by requiring that both the
flux and the concentration be continuous. This implies
that, for the analytical solution, a first- and a third-
type condition are imposed simultaneously at the in-
terface, whereas, for the numerical solution, a second-
type condition must be used at the interface. Analyt-
ical solutions for those conditions can be closely ap-
proximated by solutions for a third-type condition.
Two numerical examples demonstrated that soil strat-
ification (i.e., soil layers with different physical or
chemical properties) can have major impacts on the
transport of solutes in soils.

Appendix A. Numerical Integration with
the Gauss-Chebyshev Formula

Numerical integration of the convolution integrals ap-
pearing in Eq. [17a] and [18a] was performed with the Gauss-
Chebyshev method, which is generally more accurate at the
end of the integration interval than Gaussian quadrature
(Vandergraft, 1983). Also Gauss-Chebyshev offers greater
flexibility in choosing the number of integration points.

The integration variable 7, varying between 0 and ¢, needs
to be transformed into a variable 5 varying between — 1 and
+ 1. This was accomplished by the linear transformation =
f=ut(n + 1)/2. For a function f(7) the integration changes as

ollows:

ff(f) dr = % j fltn + 1)/2] dn [A1]
0 -1

The Gauss-Chebyshev formula states that, for a function
&,

+1
n

j (1= P godn = ¥ auglnd + Er (A2

-1 -
where Er is the truncation error, and 4 and a are the inte-
gration points and weighting coefficients, respectively:

2j - 1)«)
J

KA ?PS( 2n i=12...,n [A3]
a,-=;

where 7 is the number of integration points.
Using g(n) = (1 — 2»)"2 f{n), Eq. [Al] can then be eval-
uated according to

t

[tora =25 a -+ 02 (ad

J=1
0

Appendix B. Mass Balance Calculations for
the Analytical Solutions

The validity of the imposed boundary conditions and as-
sociated solutions can be evaluated by formulating a mass-
balance equation in the Laplace domain, followed by ana-
lytical inversion of that equation. For g, = g, = 0 and ¢,
— %, assume that the solute influx is equal to the solute flux
just outside the inlet boundary of the soil, and solely deter-
mined by advective transport with flowing water. Ignoring
diffusion and dispersion (back diffusion) into the supply so-
lution is realistic for most practical cases, including drip
irrigation, leaching from solution reservoirs that are well

mixed, and situations involving relatively high pore-water
velqc1t1es. The total solute influx, IN, across a unit cross-
sectional area at x = 0 is then defined as

t
IN = jﬂlv,C,, dr [B1]
0

which should be equal to the amount of solute accumulated
in the profile, AC, as predicted by one of the analytical so-
lutions

L @
AC = j R, Cdx + j R8,Cdx = AC, + AC, [B2]
0 L

A relative mass-balance error can be determined according
to (see van Genuchten and Parker, 1984):

E, = ACI;I Nl 100 (B3]

Equation [B2] is most easily integrated in the Laplace do-
main, and then inverted back into the real-time domain. The
Laplace-domain solutions for first-type inlet and interface
conditions, for which the solutions in the real-time domain
were given by Eq. [9], [10], [16] and [17], are:

C, (x,5) = % exp (\,X) [B4a]

G, (x,5) = —CS— exp AL + A, (x — L)) [B4b]

Integration in the Laplace domain, followed by inversion of
the Laplace transform, yields:

AC, = 6,C(D\R)'? { (t/7)"* exp(—ajt)

k? — 4akt 1
[‘ e""( 4 )J’Lzal

1
+ 2a,t — ( 2_41 + a,t) erfc (a,t'?)
k + 2a;t )

1
+ 4_01 exp(2a,k) erfc ( 22

— L= 2,k + a@) erfe ( k — 2a¢ ) } [BSa)

4a, 207
t
__8,C, k—2a (-1
AC = Z= Ry [ erfo [ St
0

k + 2a,(t— 1) }
+ exp (2a,k) erfc [ ————20 )
exp (—a3t)
(wr)'/2
where a, = v, (4R, D,)"> and k = L(R,/D,)'”. Equation [38]
can be readily derived from Eq. [B3] and [B5].

For third-type conditions at the inlet and interface, the
solutions in the Laplace domain are:

X [ a, erfc (—a,r'/?) + dr  [B5b]

T = 2 Sapan)  (B6]
1
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e e
X exp ML + A (x — L)] [B6b]
Substitution of Eq. [B6] into Eq. [B2] and inverting gives
AC = 6y, Cyt [B7]

A similar approach was followed for the problem involv-
ing a finite first layer and the simultaneous use of first- and
third-type conditions at the interface. However, the Laplace
inversion must now be obtained numerically, since no
closed-form expression in the real-time domain is available.
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